#include
using namespace std;
int merge(int arr[], int temp[], int left, int mid,
int right)
{
int i, j, k;
int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* j is index for right subarray*/
k = left; /* k is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right)) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
}
else {
temp[k++] = arr[j++];
/* this is tricky -- see above
explanation/diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i = left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
int mergeSort(int arr[], int temp[], int left, int right)
{
int mid, inv_count = 0;
if (right > left) {
/* Divide the array into two parts and
call _mergeSortAndCountInv()
for each of the parts */
mid = (right + left) / 2;
/* Inversion count will be sum of
inversions in left-part, right-part
and number of inversions in merging */
inv_count += mergeSort(arr, temp, left, mid);
inv_count += mergeSort(arr, temp, mid + 1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid + 1, right);
}
return inv_count;
}
int main() {
int t,n;
cin>>t;
while(tβ){
cin>>n;
int a[n];
for(int i=0;i<n;i++){
cin>>a[i];
}
int temp[n];
cout<<mergeSort(a,temp,0,n-1)<<endl;
}
return 0;
}